Source code for pycpshealthcare.db.Pancreas.participant_study

from .functions import get_pancreas_sensor_results, get_pancreas_results_grouped,\
    get_accel_vector_magnitude, get_accel_vector_magnitude_grouped
from .values import fitbit_values, empatica_values, equivital_values, guardian_values, \
    fitnesspal_ejercicio_values, fitnesspal_nutricion_values, oscar_values

# TODO: Test this classes!


[docs]class PancreasStudyOcurrence: """ A study ocurrence class. Has methods for getting the data of all the sensors and measures of the respective study.\ An ocurrence is defined as a unit test and is related to only one participant. """ def __init__(self, study_info, connection): self.connection = connection self.test_name = study_info["Nombre prueba"] self.test_id = study_info["test_id"] self.start = study_info["Desde"] self.end = study_info["Hasta"] self.study_info = study_info def __repr__(self) -> str: init_date = self.start.strftime("%Y-%m-%d") end_date = self.end.strftime("%Y-%m-%d") return f"{self.__class__} object (id:{self.test_id}, start_date:{init_date}, end_date:{end_date})" def get_empatica_accel_vector_magnitude(self, timestamp_start=None, timestamp_end=None): test_ids = [self.test_id] collection = self.connection.collections["Pancreas"]["empatica"] return get_accel_vector_magnitude(test_ids, collection, timestamp_start, timestamp_end)
[docs] def get_empatica_accel_vector_magnitude(self, timestamp_start=None, timestamp_end=None, bin_size=60, bin_unit="minute"): test_ids = [self.test_id] collection = self.connection.collections["Pancreas"]["empatica"] return get_accel_vector_magnitude_grouped(test_ids, collection, timestamp_start, timestamp_end, bin_size, bin_unit)
def _create_get_sensor_method(collection_name): def get_sensor_results(self, timestamp_start=None, timestamp_end=None, values="all"): """ :return: an iterable with the query results :rtype: pycpshealthcare.db.results.StudyResults :param timestamp_start: Datetime start filter for query. If not specified query will bring results from start of records. :type timestamp_start: datetime.datetime|None, optional :param timestamp_end: Datetime start filter for query. If not specified query will bring results to end of records. :type timestamp_end: datetime.datetime|None, optional :param values: The names (keys) of the values of the sensors to be returned by the query, defaults to "all" that brings :type values: str|list<str>|None, optional """ test_ids = [self.test_id] collection = self.connection.collections["Pancreas"][collection_name] return get_pancreas_sensor_results(test_ids, collection, timestamp_start, timestamp_end, values) return get_sensor_results def _create_get_sensor_grouped_method(collection_name, sensor_values): def get_sensor_results_grouped(self, timestamp_start=None, timestamp_end=None, values="all", bin_size=60, bin_unit="minute"): """ :return: an iterable with the query results :rtype: pycpshealthcare.db.results.StudyResults :param timestamp_start: Datetime start filter for query. If not specified query will bring results from start of records. :type timestamp_start: datetime.datetime|None, optional :param timestamp_end: Datetime start filter for query. If not specified query will bring results to end of records. :type timestamp_end: datetime.datetime|None, optional :param values: The names (keys) of the values of the sensors to be returned by the query, defaults to "all" that brings :type values: str|list<str>|None, optional :param bin_size: The width of the mobile window, defaults to 60. :type bin_size: int, optional :param bin_unit: The unit of the mobile window, defaults to minute. Options are minute, hour, day. :type bin_unit: str, optional """ test_ids = [self.test_id] if values == "all": values = sensor_values collection = self.connection.collections["Pancreas"][collection_name] return get_pancreas_results_grouped(test_ids, collection, timestamp_start, timestamp_end, values, bin_size, bin_unit) return get_sensor_results_grouped methods_parameters = { "get_fitbit_results": _create_get_sensor_method(collection_name="fitbit"), "get_empatica_results": _create_get_sensor_method(collection_name="empatica"), "get_equivital_results": _create_get_sensor_method(collection_name="equivital"), "get_fitnesspal_ejercicio_results": _create_get_sensor_method(collection_name="fitnesspal_ejercicio"), "get_fitnesspal_nutricion_results": _create_get_sensor_method(collection_name="fitnesspal_nutricion"), "get_guardian_results": _create_get_sensor_method(collection_name="guardian"), "get_oscar_results": _create_get_sensor_method(collection_name="oscar"), } grouped_methods_parameters = { "get_fitbit_results_grouped": _create_get_sensor_grouped_method( collection_name="fitbit", sensor_values=fitbit_values ), "get_empatica_results_grouped": _create_get_sensor_grouped_method( collection_name="empatica", sensor_values=empatica_values ), "get_equivital_results_grouped": _create_get_sensor_grouped_method( collection_name="equivital", sensor_values=equivital_values ), "get_fitnesspal_ejercicio_results_grouped": _create_get_sensor_grouped_method( collection_name="fitnesspal_ejercicio", sensor_values=fitnesspal_ejercicio_values ), "get_fitnesspal_nutricion_results_grouped": _create_get_sensor_grouped_method( collection_name="fitnesspal_nutricion", sensor_values=fitnesspal_nutricion_values ), "get_guardian_results_grouped": _create_get_sensor_grouped_method( collection_name="guardian", sensor_values=guardian_values, ), "get_oscar_results_grouped": _create_get_sensor_grouped_method( collection_name="oscar", sensor_values=oscar_values), } for key, value in methods_parameters.items(): setattr(PancreasStudyOcurrence, key, value) for key, value in grouped_methods_parameters.items(): setattr(PancreasStudyOcurrence, key, value)
[docs]class ParticipantPancreasStudiesGroup: """ A participant studies group class. Has methods for getting the data of all the sensors and measures of the respective studies group.\ A participant studies group is defined as all the ocurrences of a corresponding study type for a specific participant and is related to only one participant. """ def __init__(self, data, connection): self.connection = connection self.data = data
[docs] def get_test_instance(self, specific_test_id): for study in self.data: if study.test_id == specific_test_id: return study return None
def _create_get_sensor_method_2(collection_name): def get_sensor_results(self, timestamp_start=None, timestamp_end=None, test_ids="all", values="all"): """ :return: an iterable with the query results :rtype: pycpshealthcare.db.results.StudyResults :param timestamp_start: Datetime start filter for query. If not specified query will bring results from start of records. :type timestamp_start: datetime.datetime|None, optional :param timestamp_end: Datetime start filter for query. If not specified query will bring results to end of records. :type timestamp_end: datetime.datetime|None, optional :param test_ids: The ids of the tests to be queried, defaults to "all" that brings data of all the test ids. :type test_ids: int|list<int>|None, optional :param values: The names (keys) of the values of the sensors to be returned by the query, defaults to "all" that brings :type values: str|list<str>|None, optional """ if test_ids == "all": test_ids = [x.test_id for x in self.data] else: if str(test_ids).isnumeric(): test_ids = [int(test_ids)] elif type(test_ids) == list: test_ids = test_ids collection = self.connection.collections["Pancreas"][collection_name] return get_pancreas_sensor_results(test_ids, collection, timestamp_start, timestamp_end, values) return get_sensor_results def _create_get_sensor_grouped_method_2(collection_name, sensor_values): def get_sensor_results_grouped(self, timestamp_start=None, timestamp_end=None, test_ids="all", values="all", bin_size=60, bin_unit="minute"): """ :return: an iterable with the query results :rtype: pycpshealthcare.db.results.StudyResults :param timestamp_start: Datetime start filter for query. If not specified query will bring results from start of records. :type timestamp_start: datetime.datetime|None, optional :param timestamp_end: Datetime start filter for query. If not specified query will bring results to end of records. :type timestamp_end: datetime.datetime|None, optional :param test_ids: The ids of the tests to be queried, defaults to "all" that brings data of all the test ids. :type test_ids: int|list<int>|None, optional :param values: The names (keys) of the values of the sensors to be returned by the query, defaults to "all" that brings :type values: str|list<str>|None, optional :param bin_size: The width of the mobile window, defaults to 60. :type bin_size: int, optional :param bin_unit: The unit of the mobile window, defaults to minute. Options are minute, hour, day. :type bin_unit: str, optional """ if test_ids == "all": test_ids = [x.test_id for x in self.data] else: if str(test_ids).isnumeric(): test_ids = [int(test_ids)] elif type(test_ids) == list: test_ids = test_ids if values == "all": values = sensor_values collection = self.connection.collections["Pancreas"][collection_name] return get_pancreas_results_grouped(test_ids, collection, timestamp_start, timestamp_end, values, bin_size, bin_unit) return get_sensor_results_grouped methods_parameters_2 = { "get_fitbit_results": _create_get_sensor_method_2(collection_name="fitbit"), "get_empatica_results": _create_get_sensor_method_2(collection_name="empatica"), "get_equivital_results": _create_get_sensor_method_2(collection_name="equivital"), "get_fitnesspal_ejercicio_results": _create_get_sensor_method_2(collection_name="fitnesspal_ejercicio"), "get_fitnesspal_nutricion_results": _create_get_sensor_method_2(collection_name="fitnesspal_nutricion"), "get_guardian_results": _create_get_sensor_method_2(collection_name="guardian"), "get_oscar_results": _create_get_sensor_method_2(collection_name="oscar"), } grouped_methods_parameters_2 = { "get_fitbit_results_grouped": _create_get_sensor_grouped_method_2( collection_name="fitbit", sensor_values=fitbit_values ), "get_empatica_results_grouped": _create_get_sensor_grouped_method_2( collection_name="empatica", sensor_values=empatica_values ), "get_equivital_results_grouped": _create_get_sensor_grouped_method_2( collection_name="equivital", sensor_values=equivital_values ), "get_fitnesspal_ejercicio_results_grouped": _create_get_sensor_grouped_method_2( collection_name="fitnesspal_ejercicio", sensor_values=fitnesspal_ejercicio_values ), "get_fitnesspal_nutricion_results_grouped": _create_get_sensor_grouped_method_2( collection_name="fitnesspal_nutricion", sensor_values=fitnesspal_nutricion_values ), "get_guardian_results_grouped": _create_get_sensor_grouped_method_2( collection_name="guardian", sensor_values=guardian_values, ), "get_oscar_results_grouped": _create_get_sensor_grouped_method_2( collection_name="oscar", sensor_values=oscar_values), } for key, value in methods_parameters_2.items(): setattr(ParticipantPancreasStudiesGroup, key, value) for key, value in grouped_methods_parameters_2.items(): setattr(ParticipantPancreasStudiesGroup, key, value)