Source code for pycpshealthcare.db.Pancreas.functions

from ..results import StudyResults
from ..utils import generate_narray_pipeline, generate_vector_magnitude_pipeline, generate_vector_stats_magnitude_pipeline

[docs]def get_pancreas_sensor_results(test_ids, collection, timestamp_start, timestamp_end, values, time_sorted=True): """ A function that generates a MongoDB query from arguments for the specified collection. :return: An iterable with the database query results. :rtype: pycpshealthcare.db.results.StudyResults :param test_ids: A list of test ids to query. :type test_ids: list<int> :param collection: The collection of the sensor to query. :type collection: pymongo.collection.Collection :param timestamp_start: Datetime start filter for query. If not specified query will bring results from start of records. :type timestamp_start: datetime.datetime|None, optional :param timestamp_end: Datetime start filter for query. If not specified query will bring results to end of records. :type timestamp_end: datetime.datetime|None, optional :param values: The names (keys) of the values of the sensors to be returned by the query, defaults to "all" that brings :type values: str|list<str>|None, optional """ projection = { "_id": 0, "timestamp": 1, "test_id": 1, "values": 1, } query = { "test_id": {"$in": test_ids} } if values == "all": pass elif type(values) == str: query[f"values.{values}"] = {"$exists": True} del projection["values"] projection[f"values.{values}"] = 1 else: query["$or"] = [] del projection["values"] for sensor in values: query["$or"].append({f"values.{sensor}": {"$exists": True}}) projection[f"values.{sensor}"] = 1 if timestamp_start or timestamp_end: query["timestamp"] = {} if timestamp_start: query["timestamp"]["$gte"] = timestamp_start if timestamp_end: query["timestamp"]["$lte"] = timestamp_end parameters = {"filter": query} if projection: parameters["projection"] = projection if time_sorted: return StudyResults(collection.find(**parameters).sort([["timestamp", 1]])) else: return StudyResults(collection.find(**parameters))
[docs]def get_pancreas_results_grouped(test_ids, collection, timestamp_start, timestamp_end, values, bin_size=60, bin_unit="minute"): """ :return: an iterable with the query results :rtype: pycpshealthcare.db.results.StudyResults :param timestamp_start: Datetime start filter for query. If not specified query will bring results from start of records. :type timestamp_start: datetime.datetime|None, optional :param timestamp_end: Datetime start filter for query. If not specified query will bring results to end of records. :type timestamp_end: datetime.datetime|None, optional :param test_ids: The ids of the tests to be queried, defaults to "all" that brings data of all the test ids. :type test_ids: int|list<int>|None, optional :param values: The names (keys) of the values of the sensors to be returned by the query, defaults to "all" that brings :type values: str|list<str>|None, optional :param bin_size: The width of the mobile window, defaults to 60. :type bin_size: int, optional :param bin_unit: The unit of the mobile window, defaults to minute. Options are minute, hour, day. :type bin_unit: str, optional """ id_match = {"test_id": {"$in": test_ids}} pipeline = generate_narray_pipeline(id_match, bin_size, bin_unit, timestamp_start, timestamp_end, types=values) return StudyResults(collection.aggregate(pipeline))
[docs]def get_accel_vector_magnitude(test_ids, collection, timestamp_start, timestamp_end): """ A function that generates a MongoDB query from arguments for the specified collection. :return: An iterable with the database query results. :rtype: pycpshealthcare.db.results.StudyResults :param test_ids: A list of test ids to query. :type test_ids: list<int> :param collection: The collection of the sensor to query. :type collection: pymongo.collection.Collection :param timestamp_start: Datetime start filter for query. If not specified query will bring results from start of records. :type timestamp_start: datetime.datetime|None, optional :param timestamp_end: Datetime start filter for query. If not specified query will bring results to end of records. :type timestamp_end: datetime.datetime|None, optional """ id_match = {"test_id": {"$in": test_ids}} pipeline = generate_vector_magnitude_pipeline(id_match, timestamp_start, timestamp_end) return StudyResults(collection.aggregate(pipeline))
[docs]def get_accel_vector_magnitude_grouped(test_ids, collection, timestamp_start, timestamp_end, bin_size=60, bin_unit="minute"): """ :return: an iterable with the query results :rtype: pycpshealthcare.db.results.StudyResults :param timestamp_start: Datetime start filter for query. If not specified query will bring results from start of records. :type timestamp_start: datetime.datetime|None, optional :param timestamp_end: Datetime start filter for query. If not specified query will bring results to end of records. :type timestamp_end: datetime.datetime|None, optional :param test_ids: The ids of the tests to be queried, defaults to "all" that brings data of all the test ids. :type test_ids: int|list<int>|None, optional :param bin_size: The width of the mobile window, defaults to 60. :type bin_size: int, optional :param bin_unit: The unit of the mobile window, defaults to minute. Options are minute, hour, day. :type bin_unit: str, optional """ id_match = {"test_id": {"$in": test_ids}} pipeline = generate_vector_stats_magnitude_pipeline(id_match, bin_size, bin_unit, timestamp_start, timestamp_end) return StudyResults(collection.aggregate(pipeline))