Source code for pycpshealthcare.db.ChronoNevado.study

from ..results import StudyResults
from ..participant_info import ParticipantInfo
from .functions import get_chrononevado_sensor_results, \
    get_chrononevado_results_grouped

from .values import cpet_environment_data_values, cpet_participant_data_values, \
cpet_raw_data_values, cpet_test_data_values, finapres_data_values, finapres_raw_data_values, spo2_raw_data_values


[docs]class ChronoNevadoStudy: """ A study class. Has methods for getting the data of all the sensors and measures of the respective study.\ A study is defined as all the test ocurrences of a corresponding study type for all the participant. """ def __init__(self, connection): self.connection = connection participant_info = ParticipantInfo(connection) self.participants = participant_info.get_participants(studies="ChronoNevado").astype("participant") self.test_ids = [t.test_id for x in self.participants for t in x.studies["ChronoNevado"]]
# def get_empatica_accel_vector_magnitude(self, timestamp_start=None, timestamp_end=None, test_ids="all"): # collection = self.connection.collections["ChronoNevado"]["empatica"] # return get_accel_vector_magnitude(self.test_ids, collection, timestamp_start, timestamp_end, test_ids) # def get_empatica_accel_vector_magnitude_grouped(self, timestamp_start=None, timestamp_end=None, test_ids="all", bin_size=60, bin_unit="minute"): # collection = self.connection.collections["ChronoNevado"]["empatica"] # return get_accel_vector_magnitude_grouped(self.test_ids, collection, timestamp_start, timestamp_end, test_ids, bin_size, bin_unit) def _create_get_sensor_method(collection_name): def get_sensor_results(self, timestamp_start=None, timestamp_end=None, test_ids="all", values="all"): """ :return: an iterable with the query results :rtype: pycpshealthcare.db.results.StudyResults :param timestamp_start: Datetime start filter for query. If not specified query will bring results from start of records. :type timestamp_start: datetime.datetime|None, optional :param timestamp_end: Datetime start filter for query. If not specified query will bring results to end of records. :type timestamp_end: datetime.datetime|None, optional :param test_ids: The ids of the tests to be queried, defaults to "all" that brings data of all the test ids. :type test_ids: int|list<int>|None, optional :param values: The names (keys) of the values of the sensors to be returned by the query, defaults to "all" that brings :type values: str|list<str>|None, optional """ if test_ids == "all": test_ids = self.test_ids else: if str(test_ids).isnumeric(): test_ids = [int(test_ids)] elif type(test_ids) == list: test_ids = test_ids collection = self.connection.collections["ChronoNevado"][collection_name] return get_chrononevado_sensor_results(test_ids, collection, timestamp_start, timestamp_end, values) return get_sensor_results def _create_get_sensor_grouped_method(collection_name, sensor_values): def get_sensor_results_grouped(self, timestamp_start=None, timestamp_end=None, test_ids="all", values="all", bin_size=60, bin_unit="minute"): """ :return: an iterable with the query results :rtype: pycpshealthcare.db.results.StudyResults :param timestamp_start: Datetime start filter for query. If not specified query will bring results from start of records. :type timestamp_start: datetime.datetime|None, optional :param timestamp_end: Datetime start filter for query. If not specified query will bring results to end of records. :type timestamp_end: datetime.datetime|None, optional :param test_ids: The ids of the tests to be queried, defaults to "all" that brings data of all the test ids. :type test_ids: int|list<int>|None, optional :param values: The names (keys) of the values of the sensors to be returned by the query, defaults to "all" that brings :type values: str|list<str>|None, optional :param bin_size: The width of the mobile window, defaults to 60. :type bin_size: int, optional :param bin_unit: The unit of the mobile window, defaults to minute. Options are minute, hour, day. :type bin_unit: str, optional """ if test_ids == "all": test_ids = self.test_ids else: if str(test_ids).isnumeric(): test_ids = [int(test_ids)] elif type(test_ids) == list: test_ids = test_ids if values == "all": values = sensor_values collection = self.connection.collections["ChronoNevado"][collection_name] return get_chrononevado_results_grouped(test_ids, collection, timestamp_start, timestamp_end, values, bin_size, bin_unit) return get_sensor_results_grouped methods_parameters = { "get_cpet_raw_data": _create_get_sensor_method(collection_name="CpetRawData"), "get_cpet_participant_data": _create_get_sensor_method(collection_name="CpetParticipantData"), "get_cpet_test_data": _create_get_sensor_method(collection_name="CpetTestData"), "get_cpet_environment_data": _create_get_sensor_method(collection_name="CpetEnvironmentData"), "get_finapres_data": _create_get_sensor_method(collection_name="FinapresData"), "get_finapres_raw_data": _create_get_sensor_method(collection_name="FinapresRawData"), "get_spo2_raw_data": _create_get_sensor_method(collection_name="Spo2RawData"), } grouped_methods_parameters = { "get_cpet_raw_data_grouped": _create_get_sensor_grouped_method( collection_name="CpetRawData", sensor_values=cpet_raw_data_values ), "get_cpet_participant_data_grouped": _create_get_sensor_grouped_method( collection_name="CpetParticipantData", sensor_values=cpet_participant_data_values ), "get_cpet_test_data_grouped": _create_get_sensor_grouped_method( collection_name="CpetTestData", sensor_values=cpet_test_data_values ), "get_cpet_environment_data_grouped": _create_get_sensor_grouped_method( collection_name="CpetEnvironmentData", sensor_values=cpet_environment_data_values ), "get_finapres_data_grouped": _create_get_sensor_grouped_method( collection_name="FinapresData", sensor_values=finapres_data_values ), "get_finapres_raw_data_grouped": _create_get_sensor_grouped_method( collection_name="FinapresRawData", sensor_values=finapres_raw_data_values, ), "get_spo2_raw_data_grouped": _create_get_sensor_grouped_method( collection_name="Spo2RawData", sensor_values=spo2_raw_data_values), } for key, value in methods_parameters.items(): setattr(ChronoNevadoStudy, key, value) for key, value in grouped_methods_parameters.items(): setattr(ChronoNevadoStudy, key, value)